martes, 6 de diciembre de 2011



5.1.3 Representación De Relaciones 
 (Matrices, Conjunto, Grafos, Diagrama de flechas)

Los ejemplos de relaciones que más se presentan en el área de la computación son aquellas que están definidas sobre conjuntos finitos. En esta sección se trataran dos formas de representar dichas relaciones y su uso para poder identificar las propiedades vistas en la sección anterior.



Representación De Relaciones Usando Matrices                                                  

Un método para el estudio de las relaciones de manera algorítmica es utilizando matrices compuestas de ceros y unos.

 Sean A y B conjuntos finitos de la forma:
Si R es una relación de A en B. La relación R puede ser representada por la matriz  donde:

La matriz  se denomina matriz de R. En otras palabras la matriz, de ceros y unos, de R tiene un 1 en la posición  cuando  está relacionado con y un 1 en está posiciónsi  no está relacionado con .



Obsérvese en la definición anterior que los elementos de A y B han sido escritos en un orden particular pero arbitrario. Por lo tanto, la matriz que representa una relación.


 depende de los órdenes usados para A y B. Cuando A = B usamos el mismo orden para A y B.
EJEMPLO:
Sean 
Consideremos la siguiente relación de  :




Entonces la matriz de R es


Recíprocamente, dando los conjuntos A y B con m y n elementos respectivamente, una matriz de m x n formada de ceros y unos determina una relación de A en B.

Representación De Relaciones Usando Conjuntos                                              


Un conjunto es una colección de objetos considerada como un objeto en sí. Los objetos de la colección pueden ser cualquier cosa: personas, números, colores, letras, figuras, etc. Cada uno de los objetos en la colección es un elemento o miembro del conjunto. Por ejemplo, el conjunto de los colores del arcoíris es:


AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta}


Un conjunto suele definirse mediante una propiedad que todos sus elementos comparten. Por ejemplo, para los números naturales, si consideramos la propiedad de ser un número primo, el conjunto de los número primos es:


P = {2, 3, 5, 7, 11, 13, …}






Un conjunto queda definido únicamente por sus miembros y por nada más. En particular el orden en el que se representen estos es irrelevante. Además, cada elemento puede aparecer de manera idéntica una sola vez, esto es, no puede haber elementos totalmente idénticos repetidos. Por ejemplo:


S = {Lunes, Martes, Miércoles, Jueves, Viernes} = {Martes, Viernes, Jueves, Lunes, Miércoles}

AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta} = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta, Naranja}


Los conjuntos pueden ser finitos o infinitos. El conjunto de los número naturales es infinito, pero el conjunto de los planetas en el sistema solar es finito (tiene ocho elementos). Además, con los conjuntos pueden combinarse mediante operaciones, de manera similar a las operaciones con números.

Los conjuntos son un concepto básico, en el sentido de que no es posible definir los en términos de nociones más elementales, por lo que su estudio puede realizarse de manera informal, apelando a la intuición y a la lógica. Por otro lado, son el concepto fundamental de la matemática: mediante ellos puede formularse el resto de objetos matemáticos, como los números y las funciones, entre otros. Su estudio detallado requiere pues la introducción de axiomas y conduce a la teoría de conjunto.



Representación De Relaciones Usando Grafos

                                                                                                                
Informalmente, un grafo es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binaria entre elementos de un conjunto.


Típicamente, un grafo se representa gráficamente como un conjunto de puntos (vértices o nodos) unidos por líneas (aristas).


Un grafo G es un par ordenado G = (V,E), donde:

·         V es un conjunto de vértices o nodos, y

·         E es un conjunto de aristas o arcos, que relacionan estos nodos.


Normalmente V suele ser finito. Muchos resultados importantes sobre grafos no son aplicables para grafos infinitos.


Se llama orden del grafo G a su número de vértices, | V | .

El grado de un vértice o nodo V es igual al número de arcos E que se encuentran en él.


Un bucle es una arista que relaciona al mismo nodo; es decir, una arista donde el nodo inicial y el nodo final coinciden.





EJEMPLO:

·         V:={1,2,3,4,5,6}

·         E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}

El hecho que el vértice 1 sea adyacente con el vértice 2 puede ser denotado como 1 ~ 2.


En las teorías de las categorías una categoría puede ser considerada como un multígrafo dirigido, con los objetos como vértices y los morfismos como aristas dirigidas.




Representación De Relaciones Usando Diagramas De Flechas                                       


Una forma de representar el producto cartesiano es el diagrama de flechas.

Escriba los elementos de a  y  los elementos de b en dos discos disyuntos, y luego dibuje una flecha de ” a e a “  en ” b e b”  cada vez que a este relacionado con b.





















3 comentarios: